Biomechanical Evaluation of a Locally Manufactured Modular External Fixator for Tibial Shaft Fractures
Main Article Content
Abstract
Background. Modular external fixations used in the Philippines are manufactured abroad, leading to high costs and limited availability, making them unaffordable for most Filipino patients. The reliability of some external fixators is limited because not all have undergone biomechanical testing.
Objective. This study aimed to determine the biomechanical stability of locally manufactured modular external fixator clamps (iFIX) versus commercially available fixators (Roger-Anderson) for tibial shaft fractures.
Methodology. The biomechanical stability (stiffness, yield, ultimate strength) under loading of the local prototypes was compared with the commercially available fixators.
Result. No slippage was observed in all rods, pins, and clamps in all groups. No bending occurred in any rods or pins in all groups. There was also no apparent deformation of the internal threading of the pins within the tibial analogs. The commercial fixator group’s ultimate load to failure up was double (110.57% difference) that of the local prototype.
Conclusion. The differences in the biomechanical performance between the iFIX and Roger-Anderson clamps may be attributed to variations in clamp material composition. The iFIX fixator exhibited lower stiffness but did not display deformation under axial loading, component displaced slippage, or thread loosening, making it comparable to the commercial fixator.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Watson JT. Principles of external fixation. In: Court-Brown C, Heckman J, McQueen M, et al., Rockwood and Green’s fractures in adults. 8th ed. Philadelphia, USA: Wolters Kluwer Health;2015.
Leagogo JLA, Meriales NA, Sembrano JN. Treatment for open tibial shaft fractures at the Philippine General Hospital. Makati Medical Center Proceedings. 2004;18:11–4. Herdin Record #: PCHRD013109070106
Bliven E, Greinwald M, Hackl S, Augat P. External fixation of the lower extremities: biomechanical perspective and recent innovations. Injury. 2019;50(Suppl 1):S10–7. https://pubmed.ncbi.nlm.nih.gov/31018903 https://doi.org/10.1016/j.injury.2019.03.041 DOI: https://doi.org/10.1016/j.injury.2019.03.041
Tsiridis E, Schizas C. Bone fracture fixation. In: Wnek G and Bowlin G. Encyclopedia of biomaterials and biomedical engineering. 2nd ed., vol. 1. New York, USA: Informa Healthcare USA, Inc.; 2008. DOI: https://doi.org/10.1201/b18990-40
Carroll E, Koman LA. External fixation and temporary stabilization of femoral and tibial trauma. J Surg Orthop Adv. 2011; 20(1):74–81. https://pubmed.ncbi.nlm.nih.gov/21477538
Frydrýšek K, Koštial P, Barabaszová K, Kukutschová J. New ways for designing external fixators applied in treatment of open and unstable fractures. World Academy of Science, Engineering and Technology, Open Science Index 52, International Journal of Mechanical and Mechatronics Engineering (IJMME). 2011;5(4):848–53. DOI: 10.5281/zenodo.1329082
Kani KK, Porrino J, Chew F. External fixators: looking beyond the hardware maze. Skeletal Radiol. 2020;49(3):359–74. https://pubmed.ncbi.nlm.nih.gov/ 31515594 DOI: 10.1007/s00256-019-03306-w DOI: https://doi.org/10.1007/s00256-019-03306-w
Goh J, Thambyah A, Noor Ghani A, Bose K. Evaluation of a simple and low-cost external fixator. Injury. 1997;28(1):29–34. https://pubmed.ncbi.nlm.nih.gov/9196623 https://doi.org/10.1016/s0020-1383(96)00149-0 DOI: https://doi.org/10.1016/S0020-1383(96)00149-0
Landaeta F, Shiozawa J, Erdman A, Piazza C. Low cost 3D printed clamps for external fixator for developing countries: A biomechanical study. 3D Printing In Medicine. 2020;6(1):31. https://pubmed.ncbi.nlm.nih.gov/33095407 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585230 https://doi.org/10.1186/s41205-020-00084-3 DOI: https://doi.org/10.1186/s41205-020-00084-3
Caburnay EP, Orillaza N, Estrella E, Danao LA, Magdaluyo E. Parametric study on external fixator for tibia fracture to increase stiffness. DOST-2021 ASEAN Conference on Additive Manufacturing (ACAM). 2021:1–5.
Ramlee MH, Seng GH, Ros Felip A, and Abdul Kadir MR. The effects of additional hollow cylinder coated to external fixator screws for treating pilon fracture: A biomechanical perspective. Injury. 2021;52(8):2131–41. https://pubmed.ncbi.nlm.nih.gov/33745700 https://doi.org/10.1016/j.injury.2021.03.017 DOI: https://doi.org/10.1016/j.injury.2021.03.017
Basat PA, Estrella E, Magdaluyo E. Material selection and design of external fixator clamp for metacarpal fractures. Materials Today: Proceedings. 2020;33(4):1974-8. https://doi.org/10.1016/j.matpr.2020.06.129 DOI: https://doi.org/10.1016/j.matpr.2020.06.129
Putra MSD, Andryana S, Fauziah, Gunaryati A. Fuzzy analytical hierarchy process method to determine the quality of gemstones: Research article. Advances in Fuzzy Systems. 2018:1–6. https://doi.org/10.1155/2018/9094380 DOI: https://doi.org/10.1155/2018/9094380
Amiri-Aref M, Javadan N, Kazemi M. A new fuzzy positive and negative ideal solution for fuzzy TOPSIS. WSEAS transactions on circuits and systems. 2012;3(11):92-103. https://wseas.com/journals/cas/2012/53-497.pdf
Vossoughi J, Youm Y, Bosse M, Burgess AR, Poka A. Structural stiffness of the Hoffman simple anterior tibial external fixation frame. Ann Biomed Eng. 1989;17(2):127–41. https://pubmed.ncbi.nlm.nih.gov/2729681 https://doi.org/10.1007/BF02368023 DOI: https://doi.org/10.1007/BF02368023
Min W, Min B, Oh C, et al. Biomechanical advantage of lengthening of the femur with an external fixator over an intramedullary nail. J Pediatr Orthop B. 2007;16(1):39–43. https://pubmed.ncbi.nlm.nih.gov/17159532 https://doi.org/10.1097/01.bpb.0000236221.91453.90 DOI: https://doi.org/10.1097/01.bpb.0000236221.91453.90