Early Functional Outcome of Closed Reduction and Percutaneous Pinning of Proximal Phalangeal and Metacarpal Fractures Done Under Conventional Radiograph Guidance
Main Article Content
Abstract
Background. Fluoroscopy is the standard intraoperative imaging in orthopaedic surgery. Real-time visualization of fracture reduction and implant placement is essential, especially during closed reduction and percutaneous pin (CRPP) fixation. In the absence of fluoroscopy, conventional radiographs are used.
Objective. This study evaluated the early functional outcomes of CRPP fixation for proximal phalangeal and metacarpal fractures done under conventional radiograph guidance.
Methodology. Fifty-four patients with 72 fractures of the metacarpal or proximal phalanx in 70 fingers underwent CRPP fixation at the emergency room. Radiographs were used to assess reduction and fixation. Primary outcome measures were Total Active Motion (TAM), and Disabilities of the Arm, Shoulder, and Hand (DASH) score, while secondary outcome measures included fracture reduction, union rate, and complications. These were all evaluated at a mean of 12 weeks after surgery.
Results. An average of 2.9 radiographs were taken for each fracture, with a mean surgical time of 40 minutes. The TAM was “excellent to good” in 47% of fingers (mean = 258°), while the rest had “fair” scores (mean = 235°). Seventy-six percent of patients had a mean DASH score of 4.9. Thirty-five percent of fractures achieved anatomic reduction and maintained until union. Short procedure time did not influence the DASH scores. Complications reported were malunion (2), stiffness (5), and extension lag (7). There was no reported nonunion.
Conclusion. Closed reduction with pinning of proximal phalangeal and metacarpal fractures guided by conventional radiograph in the absence of fluoroscopy, remains to be effective and reliable with favorable early outcomes.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Kamath JB, H, Naik DM, Bansal A. Current concepts in managing fractures of metacarpal and phalanges. Indian J Plast Surg. 2011;44(2):203–11. https://pubmed.ncbi.nlm.nih.gov/22022030 PMCID: PMC3193632 https://doi.org/10.4103/0970-0358.85341 DOI: https://doi.org/10.4103/0970-0358.85341
Feehan LM, Sheps SB. Incidence and demographics of hand fractures in British Columbia, Canada: a population-based study. J Hand Surg. 2006;31(7):1068–74. https://pubmed.ncbi.nlm.nih.gov/16945705 https://doi.org/10.1016/j.jhsa.2006.06.006 DOI: https://doi.org/10.1016/j.jhsa.2006.06.006
Chung CK, Spilson SV, Arbor A. The frequency and epidemiology of hand and forearm fractures in the United States. J Hand Surg Am. 2001;26(5):908–15. https://pubmed.ncbi.nlm.nih.gov/11561245 https://doi.org/10.1053/jhsu.2001.26322 DOI: https://doi.org/10.1053/jhsu.2001.26322
Meals C, Meals R. Hand fractures: a review of current treatment strategies. J Hand Surg Am. 2013;38(5):1021–31. https://pubmed.ncbi.nlm.nih.gov/23618458 https://doi.org/10.1016/j.jhsa.2013.02.017 DOI: https://doi.org/10.1016/j.jhsa.2013.02.017
Baldwin PC, Wolf JM. Outcomes of hand fracture treatments. Hand Clin. 2013;29(4):621–30. https://pubmed.ncbi.nlm.nih.gov/24209958 https://doi.org/10.1016/j.hcl.2013.08.013 DOI: https://doi.org/10.1016/j.hcl.2013.08.013
Kozin SH, Thoder JJ, Lieberman G. Operative treatment of metacarpal and phalangeal shaft fractures. J Am Acad Orthop Surg. 2000;8(2):111–21. https://pubmed.ncbi.nlm.nih.gov/10799096 https://doi.org/10.5435/00124635-200003000-00005 DOI: https://doi.org/10.5435/00124635-200003000-00005
Oetgen ME, Dodds SD. Non-operative treatment of common finger injuries. Curr Rev Musculoskelet Med. 2008;1(2):97–102. https://pubmed.ncbi.nlm.nih.gov/19468880 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684218 https://doi.org/10.1007/s12178-007-9014-z DOI: https://doi.org/10.1007/s12178-007-9014-z
Eberlin KR, Babushkina A, Neira JR, Mudgal CS. Outcomes of closed reduction and periarticular pinning of base and shaft fractures of the proximal phalanx. J Hand Surg Am. 2014;39(8):1524–8. https://pubmed.ncbi.nlm.nih.gov/24996674 https://doi.org/10.1016/j.jhsa.2014.05.008 DOI: https://doi.org/10.1016/j.jhsa.2014.05.008
Rhee SH, Lee SK, Lee SL, Kim J, Baek GH, Lee YH. Prospective multicenter trial of modified retrograde percutaneous intramedullary Kirschner wire fixation for displaced metacarpal neck and shaft fractures. Plast Reconstr Surg. 2012;129(3):694–703. https://pubmed.ncbi.nlm.nih.gov/22373974 https://doi.org/10.1097/PRS.0b013e3182402e6a DOI: https://doi.org/10.1097/PRS.0b013e3182402e6a
Wolf JM, Weiss AP. Portable mini-fluoroscopy improves operative efficiency in hand surgery. J Hand Surg Am. 1999;24(1):182–4. https://pubmed.ncbi.nlm.nih.gov/10048535 https://doi.org/10.1053/jhsu.1999.jhsu24a0182 DOI: https://doi.org/10.1053/jhsu.1999.jhsu24a0182
Stern PJ. Management of fractures of the hand over the last 25 years. J Hand Surg Am. 2000;25(5):817-23. https://pubmed.ncbi.nlm.nih.gov/11040296 https://doi.org/10.1053/jhsu.2000.4214 DOI: https://doi.org/10.1053/jhsu.2000.4214
Pun WS, Chow SP, Luk KDK, et al. A prospective study on 284 digital fractures of the hand. J Hand Surg Am. 1989;14(3):474–81. https://pubmed.ncbi.nlm.nih.gov/2738333 https://doi.org/10.1016/s0363-5023(89)80006-1 DOI: https://doi.org/10.1016/S0363-5023(89)80006-1
Institute for Work and Health. The DASH and QuickDASH outcome measures e-Bulletin Summer 2013. Toronto, Canada: Institute for Work and Health, Toronto, Canada; 2013. https://dash.iwh.on.ca/sites/dash/files/dash_e-bulletin_2013_summer.pdf
Gieroba TJ, Bain GI, Cundy PJ. Review of the clinical use of fluoroscopy in hand surgery. Hand Surg. 2015;20(2):228–36. https://pubmed.ncbi.nlm.nih.gov/26094484 https://doi.org/10.1142/S021881041530003X DOI: https://doi.org/10.1142/S021881041530003X
Salvia JC, de Moraes PR, Ammar TY, Schwartsmann CR. Fluoroscopy duration in orthopedic surgery. Rev Bras Ortop. 2015;46(2):136–8. PMID: 27027000 https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4799182 https://doi.org/10.1016/S2255-4971(15)30228-7 DOI: https://doi.org/10.1016/S2255-4971(15)30228-7
Kesavachandran CN, Haamann F, Nienhaus A. Radiation exposure of eyes, thyroid gland and hands in orthopaedic staff: a systematic review. Eur J Med Res. 2012;17(1):28. https://pubmed.ncbi.nlm.nih.gov/23111028 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554445 https://doi.org/10.1186/2047-783X-17-28 DOI: https://doi.org/10.1186/2047-783X-17-28
Capo JT, Kinchelow T, Orillaza NS, Rossy W. Accuracy of fluoroscopy in closed reduction and percutaneous fixation of simulated Bennett’s fracture. J Hand Surg Am. 2009;34(4):637–41. https://pubmed.ncbi.nlm.nih.gov/19345866 https://doi.org/10.1016/j.jhsa.2008.12.023 DOI: https://doi.org/10.1016/j.jhsa.2008.12.023
Kenney S, Schlechter J. Do fluoroscopic and radiographic images underestimate pin protrusion in paediatric supracondylar humerus and distal radius fractures? A synthetic bone model analysis. J Child Orthop. 2019;13(1):57–61. https://pubmed.ncbi.nlm.nih.gov/30838076 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376433 https://doi.org/10.1302/1863-2548.13.180173 DOI: https://doi.org/10.1302/1863-2548.13.180173
Hsu LP, Schwartz EG, Kalainov DM, Chen F, Makowiec RL. Complications of K-wire fixation in procedures involving the hand and wrist. J Hang Surg Am. 2011;36(4):610–6. https://pubmed.ncbi.nlm.nih.gov/21463725 https://doi.org/10.1016/j.jhsa.2011.01.023 DOI: https://doi.org/10.1016/j.jhsa.2011.01.023
Faruqui S, Stern PJ, Kiefhaber TR. Percutaneous pinning of fractures in the proximal third of the proximal phalanx: complications and outcomes. J Hand Surg Am. 2012;37(7):1342–8. https://pubmed.ncbi.nlm.nih.gov/22721457 https://doi.org/10.1016/j.jhsa.2012.04.019 DOI: https://doi.org/10.1016/j.jhsa.2012.04.019
Dreyfuss D, Allon R, Izacson N, Hutt D. A comparison of locking plates and intramedullary pinning for fixation of metacarpal shaft fractures. Hand (N Y). 2019;14(1):27–33. https://pubmed.ncbi.nlm.nih.gov/30192648 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346363 https://doi.org/10.1177/1558944718798854 DOI: https://doi.org/10.1177/1558944718798854
Vasilakis V, Sinnott CJ, Hamade M, Hamade H, Pinsky BA. Extra-articular metacarpal fractures: closed reduction and percutaneous pinning versus open reduction and internal fixation. Plast Reconstr Surg Glob Open. 2019;7(5):e2261. https://pubmed.ncbi.nlm.nih.gov/31333977 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571303 https://doi.org/10.1097/GOX.0000000000002261 DOI: https://doi.org/10.1097/GOX.0000000000002261
Hornbach EE, Cohen MS. Closed reduction and percutaneous pinning of fractures of the proximal phalanx. J Hand Surg Br. 2001;26(1):45–9. https://pubmed.ncbi.nlm.nih.gov/11162015 https://doi.org/10.1054/jhsb.2000.0524 DOI: https://doi.org/10.1054/jhsb.2000.0524
Belsky MR, Eaton RG, Lane LB. Closed reduction and internal fixation of proximal phalangeal fractures. J Hand Surg Am. 1984;9(5):725–9. https://pubmed.ncbi.nlm.nih.gov/6491221 https://doi.org/10.1016/s0363-5023(84)80023-4 DOI: https://doi.org/10.1016/S0363-5023(84)80023-4
Elmaraghy MW, Elmaraghy AW, Richards RS, Chinchalkar SJ, Turner R, Roth JH. Transmetacarpal intramedullary K-wire fixation of proximal phalangeal fractures. Ann Plast Surg. 1998;41(2):125–30. https://pubmed.ncbi.nlm.nih.gov/9718144 https://doi.org/ 10.1097/00000637-199808000-00003 DOI: https://doi.org/10.1097/00000637-199808000-00003
Gregory S, Lalonde DH, Fung Leung LT. Minimally invasive finger fracture management: wide-awake closed reduction, K-wire fixation, and early protected movement. Hand Clin. 2014;30(1):7–15. https://pubmed.ncbi.nlm.nih.gov/24286737 https://doi.org/10.1016/j.hcl.2013.08.014 DOI: https://doi.org/10.1016/j.hcl.2013.08.014
Al-Qattan MM. Displaced unstable transverse fractures of the shaft of the proximal phalanx of the fingers in industrial workers: reduction and K-wire fixation leaving the metacarpophalangeal and proximal interphalangeal joints free. J Hand Surg Eur Vol. 2011;36(7):577–83. https://pubmed.ncbi.nlm.nih.gov/21546416 https://doi.org/10.1177/1753193411405943 DOI: https://doi.org/10.1177/1753193411405943
Lalonde D. Wide awake local anaesthesia no tourniquet technique (WALANT). BMC Proceedings. 2015;9(S3):81. https://doi.org/10.1186/1753-6561-9-S3-A81 DOI: https://doi.org/10.1186/1753-6561-9-S3-A81
Vosbikian MM, Ilyas AM, Watson DD, Leinberry CF. Radiation exposure to hand surgeons’ hands: a practical comparison of large and mini C-arm fluoroscopy. J Hand Surg Am. 2014;39(9): 1805–9. https://pubmed.ncbi.nlm.nih.gov/25086796 https://doi.org/10.1016/j.jhsa.2014.06.133 DOI: https://doi.org/10.1016/j.jhsa.2014.06.133
Eismann EA, Wall EJ, Thomas EC, et al. Direct beam radiation exposure to surgeons during pinning of supracondylar humerus fractures: does C-arm position and the attending surgeon matter? J Pediatr Orthop. 2014;34(2):166–71. https://pubmed.ncbi.nlm.nih.gov/23995144 https://doi.org/10.1097/BPO.0000000000000086 DOI: https://doi.org/10.1097/BPO.0000000000000086
Hand C, Bresnahan JJ, Hennrikus WL. A comparison of fluoroscopic exposure and operative time during treatment of displaced supracondylar elbow fractures in children. Traumatology. 2019;21(1):40–4. https://doi.org/10.1177/146040861774267 DOI: https://doi.org/10.1177/1460408617742676
Arnstein PM, Richards AM, Putney R. The risk from radiation exposure during operative X-ray screening in hand surgery. J Hand Surg Br. 1994;19(3):393–6. https://pubmed.ncbi.nlm.nih.gov/8077836 https://doi.org/10.1016/0266-7681(94)90097-3 DOI: https://doi.org/10.1016/0266-7681(94)90097-3
Wang ML, Hoffler CE, Ilyas AM, Kirkpatrick WH, Beredjiklian PK, Leinberry CF. Hand surgery and fluoroscopic eye radiation dosage: a prospective pilot comparison of large versus mini C-Arm fluoroscopy use. Hand (N.Y.). 2017;12(1):21–5. https://pubmed.ncbi.nlm.nih.gov/28082838 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207279 https://doi.org/10.1177/1558944716643279 DOI: https://doi.org/10.1177/1558944716643279